Search results for "solid-liquid suspensions"
showing 3 items of 3 documents
On the Reduction of Power Consumption in Vortexing Unbaffled Bioslurry Reactors
2020
Bioremediation of polluted soils via bioslurry reactors is an interesting option among those available nowadays, especially when recalcitrant pollutants are present. Vortexing unbaffled stirred tanks may be a valuable choice to this purpose as they were recently found to be more efficient than baffled vessels for solid suspension processes where mixing time is not a controlling factor. When operated at sufficiently high agitation speeds, the central vortex bottom reaches the impeller and air bubbles start to be distributed throughout the system, thus avoiding any sparger and related clogging issues. In the present work, a vortexing unbaffled stirred tank with solid loadings ranging from 2.5…
Particle Suspension in Vortexing Unbaffled Stirred Tanks
2016
Three-phase processes in which particle suspension has to be achieved in conjunction with gas dispersion are traditionally carried out in sparged, baffled stirred tanks. The operation of such tanks can suffer, however, from particles tending to block the sparger holes. A viable alternative might be provided by uncovered unbaffled stirred tanks (UUSTs), where gas self-injection can occur when the free-surface vortex reaches the impeller blades and gas bubbles begin to be ingested by the liquid. In this work, the particle suspension and liquid aeration performances in three-phase UUSTs were experimentally investigated and compared with relevant literature correlations concerning baffled syste…
Comparison of Agitators Performance for Particle Suspension in Top-Covered Unbaffled Vessels
2015
Power savings is a problem of crucial importance nowadays. In process industry, suspension of solid particles into liquids is usually obtained by employing stirred tanks, which often are very power demanding. Notwithstanding tanks provided with baffles are traditionally adopted for this task, recent studies have shown that power reductions can be obtained in top-covered unbaffled vessels. In the present work experiments were carried out in a top-covered unbaffled vessel with a diameter T=0.19m and filled with distilled water and silica particles. Two different turbines were tested: a standard six-bladed Rushton Turbine (RT) and a 45° four bladed Pitched Blade Turbine (PBT). For the case of …